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Foreword

The research summarized in this report was conducted during the
last eighteen menths with the financial support of the Netional Aeronautics
and Space Administration under Research Grant No. NGR-14-005-036. The
research is being continued with the financial support of Jet Propulsion
Laboratory, California Institute of Technology under JPL Sub Contract 951661.
The majority of the research performed has been or is in the process
of being reported in detail through References 1-4. These journal articles
are available to interested readers; therefore, this final report will not
attempt toc repeat the results reported in these references. Instead, an
attempt is made to summarize the results and contributions and give details

only for extensions which were not reported in these references.
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Nomenclature
dAb' dAQ differential areas at p & Q, respectively
a correlation distance
&g geometry dimension
B(P) radiosity at P
bo gecometry dimension
Cy coefficients for plate i .as defined in Egs. {4.2.8)
and (4.2.9)
E(P) emissive power at P
F, function defined in Egs. (4.2.5) and (4.2.20)

fny(xi’xj) geometric function defined in Eq. (4.2.21)

f(ﬁ,w;@,i) bi-directional reflectance of a perfectly conducting
material for energy incident from (¥,-) direction and
reflected into (8,7) direction

G, . %zeffigients for plate i as defined in Egs. (4.2.8) and

irradiation of an element xi

-
radiant energy leaving P in r direction per unit time,
solid angle, and area normel to r direction

5 2
geometric function (cos ep cos %Q/nr PQ)

geometric function defined in Egs. (4.2.4) and (4.2.19)

k absorption index

L length

N number of elements

;’ conplex refractive index

n refractive index

;;’;Q outer surface normals to dAP and dAQ, respectively

q"(P) net radiant energy transport to P per unit ares and time



T(P)

ref
u (2)

a(P,E)

pia’Bib

(P,%)
e(8)

as

E
$

¥
o(P,r,3)

p(6)

vi
distance between P and Q
direction vectors
directional reflectance as defined in Eq. (3.1.5)
normalized bi-directional reflectance
colliminated soclar radiation illuminating P from'g
direction per unit time and irradiated area normal to
direction of irradiation
temperature at P
reference temperature
unit step function; if 22 0, u=1; if Z <0, u=0
function defined after Eq. (3.1.3)
parameter defined by Eg. (3.2.3)

directional absorptance of surface P for energy incident
in 3 direction

parameter defined by Eq. (3.2.3)

dimensionless radiosities

Direc delta function

directional emittance of surface P'in E direction
directional emissivity predicted by electromegnetic
theory for a smooth, plane surface at angle 6 from

surface normal

parameter defined by Eg. (3.2.3)

dimensionless distance

azimuthal angle of reflectance

polar angle of incidence

bi-directional reflectance of surface P
reflectivity predicted by electromagnetic theory

for a smooth, plane surface irradiated at angle
6 from surface normal
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Subscripts
b

c

i,J
. ic

5p

polar angle of reflectance

angles between line joining p and Q and the respective
surface normals

direction of solar field
Stefan-Boltzmann constant
rms height of roughness element

element of solid angle

black
coherent

hemispherical

incident

radiation polarized parallel tc plane of incidence

plate i and j, respectively

‘ incoherent

© normal

radigtion polarized perpendicular to plane of incidence
specular

monochromatic quantity
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1.0 Introduction

This is the final report for NASA Research Grant NGR-14-005-036,
"Theoretical Study of Radiant Heat Exchange for Non-Gray Non-Diffuse
Surfaces in a Space Environment." This study was conceived as an
examination of the influence of the spectral and directional radiation
property dependencies of typical spacecraft structural materials on
radiant heat exchange and equilibrium temperatures in a space environment.

The objectives of the study were fourfold. First, to accurately
evaluate the radiant heat exchange and eguilibrium temperatures for a
representative system of surfaces in a space enviromment accounting for
épectral and directional surface property characteristics. Results of such
analysis can provide a standard of comparison for all currently employed
simplified theories of radiant transfer and provide the basis for the

development of improved methods. Secondly, to determine the accuracy of

1@0@1&%1? @&iffuse and gray diffusely emitting-specularly
ref&sa%igg theories ¢f surface heat exchangé for predicting heat transfer
and equilibrium temperatures. Thirdly, to initiate the development of
improved methods for radiant heat transfer analysis which can adequately
account for the radiating character of engineering materials in an accurate,
yet reasonably simple, manner. Finally, to provide the direction required
for experimental radiation property measurement programs in order that the
required property information is available to implement the improved theories
for use by spacecraft thermal control designers.

A method of analysis for evaluating radiant heat transfer between non-
gray non-diffuse surfaces is introduced first in Section 2.0. The remainder

of the section is devoted to a description of the system and associated



environment selected for study and the relationship of the widely used
grey theories of radiant transfer to the real surface analysis previously
introduced. The detailed surface property information reguired for the non-
diffuse, non-gray analysis is essentially embodied in the bi-directional
reflectance of the participating surfaces. Two models for bi-directional
reflectance of metal surfaces as well as directional and hémispherical
surface radiation properties are reviewved in Section 3.0. Although heat
transfer results are not yet aveilable for the non-gray non-diffuse surface
analysis, intensity distributions for a simplified version of the selected
system are given and discussed in Section L.l1. Heat transfer and equilibrium
temperatures predicted by gray theory are also presented in Section 4.0.
These are intended to extend the scope of the results already available and
thereby provide sufficient information to adequately evaluate the accuracy
of gray theory. The results of the research effort and conclusions derived
therefrom are summerized in Section §.0.

Early in the research effort, a study of the bi-directional reflectance
model originally proposed for use in the heat transfer analysis revealed
that it displayed certain inadeguacies, As a result of this finding, another
model was studied and found superior in many respects. This unanticipated
study of bi-directiocnal reflectance has delayed the heat transfer study to
the point where results from the non-gray non-diffuse analysis are not yet

available.



2.0 Method of Analysis

The purpose of this section is threefold. First to present the method
of analysis employed for the evaluation of radiant heat transfer and
equilibrium surface temperatures accounting for the spectral dependence and
non-diffuse character of radiation properties of engineering materials.
Secondly, to focus attention on the information required to implement the
analysis and, in particular, the system and associated environment chosen
for study. Thirdly, to demonstrate that the widely used idealistic theories
of radiant exchange analysis, namely the gray diffusely emitting-diffusely
reflecting and gray diffusely emitting-speculerly reflecting theories, are
limiting forms of the non-grey non-diffuse analysis.

Certain simplifying assumptions are employed in the analysis. These
are not expected to seriously impair the relevancy of the analysis to space
applications. It is assumed that surface heat exchange occurs only by
radient energy transport and except for the presence of the solar field,
other external sources of thermal radiation are negligible in comparison
to the solar field and surface emission. The interacting surfaces are talken
opaque and the intervening media diathermanous with unit refractive index.
Only steady transport is considered and the influence of polarization on
radiant exchange neglected. TFigure 1 illustrates a typical two surface
system in the presence of a collimated solar radiation field. This general

system is used in the discussion to follow.



Fig. 1 Typlcal two surface system in a collimated solar field.



2.1 Non-Gray Non-Diffuse Surfaces

The local radiant heat flux to a typical element of a surface, say the
elemental area dA.p located at point P of the surface designated 1 (See Fig. 1)
may be evaluated ag the difference between the absorbed irradiation and the

emission.

)
- -

Q" (B)=m ‘fo j‘A oz)\(P,r)Il (Q,r)K(P,Q)aAQm + Joﬂ,z}\(P,i)S)\(P,i)cos(np,-i)dh -
Q

- og(P)s(P) (2.1.1)

The terms on the right-hand side of Eg. (2.1.1) represent in the order in
which they appear; absorbed irradiation from all surfaces or portions of
surfaces observed from P, directly incident solar radiation absorbed at P
and the emission of dﬁp. The contribution of solar irradiation appears in

the local radiant heat loss expression only for those surface elements
-d

directly illuminated by the solar field. The symbolS(yh(P,r) and

-

ax(P,i) represent the local monochromatic directional absorptance for

L d -

irradiation incident from the r and i directions, respectively, whereas ¢
- s

denotes the locel hemispherical emittance. K(P,Q) end cos(gp-i) are

H

gecmetrical parameters which may be evaluated after specification of the
orientation of the surfaces and direction of the collimated solar field
SK(P,EB. Thus, if the spectral properties of the surface <”x’€x)’ spectral
distribution and direction of the solar field (SAﬂP,;B), geometry of the
system, and the temperature distribution {or radiant flux distribution) are
specified, the local heat flux (or local temperature) may be evaluated
provided the spectral radiant intensity Iy is available.

The local spectral radiant intensity is determined from the following

integral equation:



Y.

-

I, (Qr) = ey (r)E ,(q) + o}\(Q,i,r) 8, (@ 1)cos(n y-1) +

[ oy (@amr, (r,50k(p, Qo (2.1.2)

AP'

— -

where pR(Q,s,r) is the bi-directional (or bi-angular) reflectance and Eb’x
the local spectral emissive power of a black surface given by the Planck
function. Eguation (2.1.2) and an analagous eguation for Ik (P',;3
constitute a pair of simultaneous integral equations which reguire solution
at each point on the surfaces for all possible directions in every wave
length interval of importance. Once having determined such a solution for
surfaces of specified temperature, the local radiant heat flux follows
directly from Eg. (2.1.1). An iterative procedure involving both Egs. (2.1.1)
and (2.1.2) is necessary to determine the temperature distribution when the
locai;}lux is gpecified since the temperature enters both equations
pavamstrically.

thé.syétem chosen for analysis is shown in Figure 2., It consists of
two finite length plates with uniform properties and infinite in extent
normal to the figure. This system was chosen because of its simple
geometrical character, the availability of heat transfer results of previous
investigators for certain limiting situations, and the important features of
spacecraft heat transfer which are readily incorporated. Among the latter
are interreflection phenomena and solar shading effects. Moreover, by
appropriate selection of geometrical parameters, the results for this system
find direct application to "radiant energy piping," portions of louver systems,

radiation shields, cover glasses on solar collectors and other engineering

systems. Having selected the geometry, the geometrical parameter K(P,Q)
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Fig. 2 Geometry of analysis.




entering Egs. (2.1.1) and (2.1.2) is readily evaluated.

The only aspect of the system environment requiring further elucidation
is the solar field. The solar field is taken collimated and in the plane of
the figure with the direction (I ) left as a parameter in the analysis.
Johnson's [5 1 spectral distribution of the solar intensity is used. With
the specification of the environment, the geometrical parameter cos(;;,:;)
is defined in terms of the selected value for the direction of incidence and
the local surface normal.

The thermal surfece conditions initially chosen for investigation are
those of uniform temperature and zero radiant heat loss. The latter provides
so-called "eguilibrium temperatures" which represent the maximum temperatures
a system can attain for a specified external irradiation field in the
absence of other modes of heat exchange. When the temperatures of the
participating surfaces are specified interest lies in the evaluation of
radianﬁ heat transfer whereas for zero radiant heat loss, equilibrium
temperatures are determined,

It remains to select the surface properties for the analysis. Section
3.0 is devoted to a discussion of two models for bi-directional reflectance
and also directional radiation properties. Before passing on to these topics,
the simplifications realized in the analysis by the commonly employed
assumptions of spectral independence of properties (gray surfaces) and of
diffusely reflecting or specularly reflecting surfaces are considered‘;g
the following sections. Some results obtalned using these idealistic

theories are given later.

)
Numbers in brackets [ ] designate references in Section 6.0.



2.2 QGray Surfaces

Most'reported radiant heat exchange analyses employ the gray assumption,
that is, the spectral dependence of radiation properties is ignored. Although
no such surfaces exist, the results obtained often provide considerable
insight into the radiant exchange processes as well as sufficiently accurate
results to warrent their uses in predicting general trends.

Introducing the assumption that all participating surfaces are gray

yields the following equalities between total and spectral property values:

~

H,)\- = eH} Q’)\ = C!) Ox = D) 67\ = € (2.2.1)

Also denoting the spectrum integrated energy quantities with the symbolism

n
- | - - 4
Ihd)\, S = ‘Jo §,ar, E = Jl' E ax = o (2.2.2)

N the equations for local radiant flux and intensity transform to:

" () = ] aer) 10x) KBty + 02,1 S(B,1) conly, D) -
Q

eH(P) o7 (P) (2.2.3)
1(a,7) = e(@,r) 2L+ p(a,8,0) XD cos (n,-1)

Q(Qg;) 1 1

+ r 28, I(p',s) K (P ,Q)dAP, (2.2.4)
APl

The simplification introduced by this assumption is evident. No longer is

it necessary to solve the integral equations for intensity at each wave

length. This, of course, greatly reduces the numerical effort normally

required to evaluate results from radiant exchange analysis.
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2.2.1 Diffusely Emitting--Diffusely Reflecting Surfaces

One of the commonly employed idealizations for the directional
variation of surface eﬁission and reflection is that corresponding to a
diffuse surface. A aiffuse surface emits energy and reflects incident energy
with equal intensity in all directions. Therefore, the directional emittance
is equal to the hemispherical emittance. Although the directional reflectance
of a diffuse surface need not be identical for all directions of incident
energy, it usually is so taken and this further stipulation is employed here.
For a diffuse surface, the bi-directional reflectance, directional reflectance
and hemispherical reflectance are equal. The heat flux and intensity
relations corresponding to gray diffusely emitting-diffusely reflecting

surfaces are as follovs:

q"(P) = ﬂ’!rAQ QH(P)I(Q)K(P,Q)dAQ + aH(P)s(P,'i’)cos(7ip,~;)1H(P)c (p) (2.2.5)

1(q) = eH(Q)@'?;}@ MH(Q)g(Q,;)COS(;Q,*;) + [ eglr(e (P QA (2.2.6)

o,

The further simplication introduced by the additional assumption of a
diffuse surface eliminates the need to evaluate the intensity in different
directions. It is customary in diffuse analysis to employ the concept of
radiosity, B(Q). Radiosity is simply the total energy leaving a surface
element per unit time and area and is related to the intensity of a diffuse
surface by the relation

B = ~ L.
Introducing radiosity into Egs. (2.25) and (2.2.6) yields the following

eguations:
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-9

q"(P) = U;A:ﬁ(P)B(:«:,)K(P,mdAQ + ofP)s(y Z)cos(zp,_z)_eH(P)cT‘*(P) (2.2.7)
B(0) = ey(Qor(a) + oy (8(8,D)con(ngy-1) + [ oy (WB(R (P, Qaa_,

!

(2.2,8)

The determination of the solution to Lg. (2.2.8) for various geometrical
arrangements of different systems of surfaces has been the goal of many

previous investigators.

2.2.2 Diffusely Emitting--Specularly Reflecting Surfaces

A second model for surface reflection which has received considerable
attention in the recent literature is that of specular reflection. In a
specular reflection, the incident beam leaves the surface in the plane of
incidence with the polar angle relative to the surface normal egual to that
of the incident beam. Also, the solid angles of transfer‘f;r incident ang
reflected radiation are egual. Diffuse and specular reflection are usually
considered as the two limiting cases for reflection from a surface. Except
for a recently reported analysis [ 3], the dependence of the reflectance
magnitude on the direction of incidence is usually ignored and the diffuse
ion model retained. This serves to significantly reduce the complexity
of specular reflection analysis.

The bi-directional reflectance of a specularly reflecting surface is a
Dirac delta function in which case the integral in the intensity relation
of Eq. (2.2.4) degenerates to the single term pH(Q)I(P',;Sp) where ;sp deiotes

the direction of the incident ray which is specularly reflected into the r

direction. Then for a gray diffusely emitting-specularly reflecting



surface, the heat flux and intensity expressions become:

(7)) = 7[ aye)IQIKEDa + ay(PIs(e,i)eos(r,-1)
"
- €,(P) oT%(P) (2.2.9)
- eg(Q) oT*(c) >
(Q,r) = - + pglQ)T(Bryry)
+ Py (0) S(Q;;)cos(;é,;;) (2.2.10)

m

The last term in the intensity relation is retained only for the
direction corresponding to ;;p' Equation (2.2.10) has in principle
been solved by a number of investigators employing the concepts of ray

tracing or image surfaces.
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3.0 Radiation Properties

Implementation of the heat transfer analysis requires surface radiation
property information, particularly an acceptable description for the
bi-directional reflectance of engineering materials. Two models for the
bi-directional reflectance are considered in Section 3.1. As a result of
this study, the Davies model [ 6] originally proposed for the heat transfer
study was discarded in favor of the Beckmann model [7]. Directional and
hemispherical properties are considered in Sections 3.2 and 3.3 respectively.
Unlike previous investigations, the purpose of these studies was to evaluate
the accuracy of certain approximete formulas for calculating directional and
hemispherical properties. The relative simplicity of the approximate
relations is particularly attractive as a means of reducing the complexity
and calculation time required in the already difficult and time consuming
heat transfer calculations. Criteria are developed which assure a prescribed
accuracy in the evaluation of directional and hemispherical properties when

using the simpler approximate relations.

3.1 Bi-Directional Reflectance

A number of models for the reflection of electromagnetic radiation from
surfaces with widely different topography have been proposed in the literature
[71. Most of these are derived for electrical conductors of infinite
conductivity. The limitation to infinite conductivity eliminates the need
to consider volume effects since under such conditions the reflection process
is a surface phenomenon. This artifice greatly simplifies the analysis but,
of course, places severe limitations on the models. The infinite conductivity
results are usually modified in some approximate manner for application to

engineering materials.



1k

The two models examined here consider only the influence of surface
roughness on the distribution of reflected energy. Since detalls of this
study are reported in reference [ 1], discussion is limited to the more
significant results and their implications for the heat transfer study.

The influence of surface roughness on the radiation properties of
materials may be generally discussed in terms of the magnitude of the
optical roughness of the surface. By optical roughness, reference is made
to the ratio of a characteristic dimension of the surface asperity height
to a characteristic wave length of the incident radiation. For optical
roughness velues much greater than unity, multiple reflections occur
between roughness elements resulting in increased emittance and decreased
reflectance as compared to that of the same material with an optically
smooth surface. This, of course, is the phenomenon which results in the
so-talled "cavity effect" whereby the epparent emittance or absorptance of
é‘?%#%%&”is larger then that of the constituent material. For large optical
réugﬁﬁéés, the methods of geometrical optics apply and results using such
analysis have been reported for simple cavity shapes. On the other hand
when optical roughness is small, the influence of multiple reflections is
small and the emittance and reflectance of the surface are essentially
identical to thoseof an optically smooth surface. However, the distribution
of reflected energy is strongly affected by the surface roughness. For
small optical roughness values, the distribution of reflected radiation may
be described in terms of a diffraction model.

The range of optical roughness for spacecraft structural materials
is of interest in establishing the type of model more appropriate in the

present study. For metals, surface roughnesses characteristic of those
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produced by normal machining, grinding, and polishing operations result’

in mechenical root mean square roughness heights of about one micron with

a half or fourth probably more representative. For surfaces of these
roughnesses and radiation in the infrared (0.8-100; ) the approximate

range of optical roughness is 0.003 to 1.0. This range of optical roughness
also appears appropriate for solar radiation at least for the smaller
mechanical roughness of polished surfaces. In view of the range of optical
roughness values of interest, a diffraction model appears appropriate for
describing the influence of surface roughness on the radiation properties
of metals. Two such models, namely those of Beckmann [7 ] and Davies {6 ]
are here discussed.

Both the Davies and Beckmann bi-directional reflectance models consider
the reflection of unpolarized radiation from a perfectly conducting material
with random surface heights distributed according to the Gaussian distribution
with standard deviation ¢ . The two dimensional distribution function 1s
Gaussian with auto-correlation coefficient also Gaussien with correlation
distance a. PhySically; o represents the root mean square surface rough-
ness height and a is proportional to the reciprocal of the root mean square
slope of the surface roughness profile. Interreflections and shadowing
affects are neglected and analysis limited to ratios of correlation distance
a to wave length )\ much larger than unity (a/k >> 1). Davies, however,
treats only the limiting cases of very small (o/A << 1) and very large
(s/n >>1) optical roughness. Beckmarn [ 7] points out that Davies initial
point of departure in his analysis limits the results to surfaces with
extremely small roughness profile slopes and therefore the Davies'result for

very large optical roughness values is particularly gquestionable.
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The results- of both analyses ;‘or bi-directional reflectance of infinite
conductivity materials, fx(w,n;e,é)f are conveniently expressed as the sum
of two terms. One term, f)hc(\y), represents the coherently reflected energy
and the other, fx’ic(w,n;e,@), denotes the incoherently reflected energy.

Beckmann's analysis yeilds

£,(0,m6,%) = £, (V) Uw) + £ ; (¥,70,%) (3.1.1)
where

s o 2
£,00 = caym o [en($) eosy] (3.1.2)

2(3)2
TAX 1 + cos@cosV - sinfsin¥cos®|?
cosbcosy cosB + cosy

f)vic(‘l’: nieyé)

_ o 2(2)2 2]m
exp ".2“ (f;)(cose . cos\V)]a : Z [b, (5)%(coso + cosW)j

=1

m + m!

2
exp { - %— (%2 [sing\lf + 8in®0 - 2sinV¥ siné cos cp] (3.1.3)

U = u(e -~ Vul¥y + aw - 8)u(g)u(a - &)

with u{z) the unit step function which has the value O for argument less
than zero and 1 otherwise. The Davies model for small optical roughness
differs only in the expression for the incoherently reflected energy. For

the Davies model, Equation (3.1.3) is replaced with the following expression.

os6 + cosy)?
cosO cos y

f)\,ic(q!)ﬂ;e, @) = n4(%)2(%)2 (C

\

The angles in the previous expressions are shown in Fig. 3.

exp[ .,tg(-z;t—)2 [sin‘?\y + 5in®8 - 2sinVy sind sin T’]} (3.1.4)

*In Figures 3, 4, and 5, ¢ =3&.
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Both models satisfy the Helmholtz reciprocity reguirement and predict
that the distribution of coherently reflected energy depends only on the
angle of incidence, solid angle containing the incident energy and the
single surface parameter optical roughness, (o/\). Figure 4 illustrates the
results obtained for the coherent component of both models as a function of
the optical roughness of the surface for a range of angles of incidence.

The trends are as expected. For specified angles of incidence the coherently
reflected energy leaving the surface in the specular direction diminishes
with increasing optical roughness and the surface appears optically smoother
with increaesing angles of incidence for a specified optical roughness.
Experiment (8] appears to confirm the coherent term.

The incoherent term of the bi-directional reflectance models contributes
to the energy reflected into the specular direction as well as all other
possible directions. According to both models the distribution of incoherent-
1y reflected energy depends on two surface roughness parameters (o/\) ana
(a/\). The dependence on the root mean square slope of surface roughness
does not appear to have been fully recognized by other investigators althouzh
experimental evidence appears to substantiate this dependence [8]. Figure 5
illustrates results obtained from the Beckmann model for a range of optical

roughness values with an angie of incidence of 10°. The distributions obtained

-~
£S

Lo}

o
significance is the increasing specularity of the surface with increasing
(a/\) for a selected (o/\) value. That is, the model predicts that a surface
of specified optical rovghness approaches a specularly reflecting surface as
the roughness slopes dimirish. Due to inadequate description of surface

roughness, specifically values for (a/x), the only data apparently availabla



Fig. 3 Angles of incidence and reflection.
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to evaluate the Beckmann model is that of Birkebak [ 8 ]. Although this data
is inadequete to verify +the model,a typicel comparison is shown in Figure 6.
Further details and comparisons are available in reference {1 ].
Since both models are derived for perfectly conducting materials, all

incident energy should be accounted for in the reflected beam, that is,

the directional reflectance should be unity independent of angle of incidence
and the surface roughness parameters (o/\) and (a/\). The directional
reflectance is determined by multiplying the bi-directional reflectance with

(cos edmr/n) and integrating over all solid angles.

2n n/2
= '}F / / Ty cos 6 sin 6 d6 do (3.1.5)
O

Results obtained for the directional reflectance RX are given in Table I
for the Beckmann and Davies models. It is evident from these results that
unit directional reflectance is generally not obtained. The Beckmann model,
however, satisfies this requirement quite well and is notably superior to that
of Davies. The Davies model predicts unit directional reflectance only in
the range of surface roughness parameter values in which the departure from
purely specular reflection is so slight as to be neglected with little loss in
accuracy. Since the unit reflectance oyiterion is essentially an energy
conservation requirement, it is clear that the use of the Davies model, which
grossly violates energy conservation in the range of optical roughness
parameters of interest, could render heat exchange results useless. It was
this finding early in the research effort which prompted the study of the
Beckmann bi-directional reflectance model.

As noted earlier, the bi-directional reflectance models discussed were

derived for perfectly conducting materials and must be modified for use with
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*
Directional Reflectance from Beckmann's Model and Davies'Model

2.
= 0.01
a/k
i 1. 5. 10, 50. 1c0,
0° 1,000 1,000 1.000 1.000 | 1.000
T 079997 T 7 T ILOO0T T T17000T Tf T 71000 T T 15000
ko® 0.998 1,000 1.0C0 1.00_ | 1.000
T T079997 T T T IL.000 T ] T 1000 )T T1Teto” 71,000
80° 1.002 1.C00 1.000 1,00 | 1.000
T 17000 T T T ILOOG T T T T1ioCoT TP T T1i000T 1.000
O -—
T = 0.0k
a/\
§ 1. 5. 10, 100.
0° 1.000 1,000 | 1,000 | 1.000 |
CTANTTT T T TL029 T 7T o3 1 1.028 T T
Lo° 0.9%60 1.C00 1.000 1,000
T 00995 T T T T IvoToT T T IL,0A0 )T AVoI1 —
80° 1.025 1.002 0.999 0.999 _
TR T T TILLCOLT T TILLO00 TP T itotoT T T T T T T T
g _
Y= 0.10
a/\
¥ 1. 5. 10, 50. 100.
0° _ 1l.c01 1.0 | 1,000 |} 1,000 | 1.000 _ _
T05T T TILURE T T T T8 1785 T T T 1,785
Lo® 0.981 1.000 1.000 | 1,000 | 1,000 _ _
T7Ioes ~ 7T A3I9” 7T T 1,325 _ 1.525
80° 1,1k 1,000 | _0.999 |  1.0€0 1 _1.000
T 08T T T TILO09T TIT TILOOG T 1,001 T T 1,001

*
Values above and below dashed line refer to Beckmann's model and
‘Davies' model, respectively
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TABLE 1 continued

g
a/k
§ 1. 5. 10, 50. 100,
0° 0,996 | _1.000_ _| _1.000 _1.000 _ ] _1.000 _ _ _
— 3.855 4,052 §.058 Iy.600 Ii,600
Lo° | 0,961 | 1.000_ | _1.000 1,000 _|_ 1.000_ __ _
27213 2. 457 PR PRIV 2, 466
80° | 1.356_ | _1.03 | _ 0,999 1 _ 1 1.000 _ | _1.000 _ _ _
1.245 1.027 1.005 1,007 1.007
g _.
)\ - 0020
a/,\
¥ 1. 5 10 50, 100,
o° | 95 | 1.000_ I _1.000 | _1.,000 _ 1 _1.000 _
5,999 £ 3506 6.315 5.318 6.318
L _____} 2000 '} 1,000 | 1,000 | 1.000 _ _
I —%,719 3,728 3,731 3.731
| 1.518_ ) _1.03% G998 _|__1.000 i 1,000 _ _ _
135 1,068 1.013 1.017 1,017
g = 0,
A 50
a/k
y 10 20 100 150
0° | 1.000 | 1,000  |_ _1,000 | _1.000 _| __ _____
39,45 39.47 39.48 39.48
bo° | 1,000 _| _1.00 _| 1,000 | _i.co0_ | _____ _|
55.15 25.16 25,17 23,17
80° . .81 | .98 |_ _1.000 _|__1.000 _f _ _ ____ _ |
- 170 T 1.462 1.49k 149k
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engineering meterials. One suggestion put forth is to simply multiply the
bi-directional reflectance for infinite conductivity by the directional
reflectance of finite conductivity materials with an optically smooth surface.
Although this method is not completely satisfactory and other approximetions
are possible [ 1], it, as well as the general need to consider directional
property dependencies, lead to a study of directional reflectance. The
results of this study are discussed in Section 3.2.

As a result of this study of bi-directional reflectance, the Davies
model was discarded and the heat exchange calculations based on that
proposed by Beckmann. This was justified on the basis of two criteria.
First, the development of the Beckmann model indicated a firmer theoretical
foundation and a wider range of applicability in terms of the optical rough-
ness parameters (o/\) end (a/\). Secondly, the gross violation of the
energy conservation requirement by the Davies model for optical roughness
parameter values of interest in this investigation. This latter deficiency
could render the results of the heat transfer study useless. Unfortunately,
sufficient experimental data is not available to substantiste the Beckmann
or, for that matter, any other model for bi-directional reflectance. However,
qualitative agreement appears to exist with the limited data available

although gquantitative agreement is only fair.
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5.2 Directional Properties

The directional radiation properties of optically smooth surfaces have
been considered by many previous investigators. However, the intent of this
study differs substantially from previous efforts in that the prime purpose
is to ascertain the degree of validity of simplified formulae for directional
properties. The exact relations of electromagnetic theory are particularly
tedious to use in numerical calculations and the use of approximate relations
can significantly reduce the complexity of the heat transfer calculations.

Electromagnetic theory provides directional reflectivity relationships
for optically smooth uncontaminated surfaces in terms of the refractive and
absorption indices of the material. The expressions for the specular
reflectivity of & non-megnetic material are:

RADIATION POLARIZED PERPENDICULAR TO PLANE OF INCIDENCE (pS k)
2

cos®6 - 2na cos6 + n2(1 + k3) B

p, (6] (3.2.1)
8sh cos® + 2na cosb + n3(1 + k%)
RADIATION POLARIZED PARALLEL TO PLANE OF INCIDENCE (p& X)
2
2 2 2, .
pi,x(e n2(1 + k®) cos®6 - 2ny cosé + P (3.2.2)

n?(1 + k%) cos®6 + 2nvy cosé + B

with

2 - 1+ x5 (l-k2)+p _(sin29 J

1+ k® n?(1+k3)

62

[1 . (=in% )]2 ) 4 [ 5in20 ] (3.2.3)

nZ(1+k?) (1 + x3) n3(1+k3)

y o= G=K) o 2 NI poat
(1 + k®) (1 + x3)
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where the optical constants n and k specify the real and imaginary components

of the complex index of refraction

n = n(l - ik) (3.2.4)

and 6 denotes the polar angle of the incident beam measured relative to the
surface normel. The Fresnel reflectivity relations of Egs.(3.2.1) and (3.2.2)
are in essence spectral values since both n and k are strong functions of

wave length. Also, these relations are strictly applicable when the medium
adjacent to the reflecting surface is a vacuum or gas for which the refractive
index is unity and absorption index zero. If the incident radiation is
unpolarized, the monochromatic specular reflectance is the arithmetic mean

ofps))\ and  pj 4- Then

oy (6) = %(ps,)\ LTI ) (3.2.5)

where (@) denotes the directional reflectivity for unpolarized rediation.
The complicated character of the exact reflectivity relatlons has
inspired the use of simpler approximate formulae. The approximate relations

considered here are those derived for the case where
n3(1 + k%) >> 1

When the ghove holds the factorsa, R, and v of Eg. (3.2.3) are
approximately unity resulting in the following simpler expressions:

RADTATION POLARIZED PERPENDICULAR TO PLANE OF INCIDENCE ( Pq )‘)
’

(n - cos 6)2 + n?k®

]|

(e) (3.2.6)
P (n + cos €)% + n%k?2



28

RADTATION POLARIZED PARALLEL TO PLANE OF INCIDENCE (pi x)
>
1l 2 2,2
(n - )2 + n®k
o (8) = copd — — (3-2.7)
ix (n + m—) + n°k

Either set of relations for reflectivity may be utilized for the

directional absorptivity of opague materials through the relation

o (9 = 1- g (8) (5.2.8)

and consequently, according to Kirchhoff's law,

e, () = q (6) (3.2.9)

for the directional emissivity as well. Representative results for the
angular dependence of the components of the directional reflectivity
(ps,X’ 95k? end the directional reflectivity for unpolarized radiation (px)
are illustrated in Figs. 7, 8, and 9 for values of the absorption index of
0.0, 0.5, and 4.0, respectivély. The results for both the exact and
approximete relations are shown in each figure for selected values of the
refractive index. In general, the approximate relations give exceptionally
accurate results especially for values of the absorption index exceeding 4.O.
However, as might be expected, the directional reflectivity predicted for non-
conductors (k = 0.0) for unit refractive index is in gross error. It is also
evident from the figures that the approximate relations yleld results of
considerably greater accuracy for pij(e) and px(e) than for pi,x(e).
Criteria have been developed to assure a selected percentage accuracy
by the use of the approximate relations. These are given in terms of the
perameter n2(1 + k%) for 1.0, 5.0, and 10.0 per cent accuracy in Teble 2.

The use of this table mey be illustrated by the following example. If the
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accuracy of a certain celcuwlation warrants only a 5.0 per cent accuracy in
the directional reflectivity, the approximate formulae of Egs. (3.2.6) and
(3.2.7) may be used to evaluate the reflectivity for unpolarized radiction
provided n®(1 + k) 2 7 if n 2 1. On the other hand, if polarization
effects are of importance, n?(1 + k®) must exceed 70 when n > 1 to assure

a 5.0 per cent accuracy in the calculation of pi,§e) . Should the material
exhibit values of n®(1 + k®) < 7, then there is no alternative but to use
the exact relations to achieve the desired accuracy.

The normal emissivity has received considerable attention in the
literature. This may be generally aﬁtributed to the ease with which it may
be measured in comparison to, for exsmple, the hemispherical emissivity. The
normal emissivity, GN:A is the directional emissivity evaluated in the
direction of the surface normel (6 = 0). The approximate formulae yield

the value derived from the exact relations, that is,

The dependence of ¢ . on the optical perameters n and k 1s illustrated in
2
Figures 10 and 11.

TABLE 2

MINIMUM ALLOWABLE VALUES OF n3(1 + k%)
FOR SELECTED ACCURACY IN APPROXIMATE
REFLECTIVITY RELATIONS

| PERCENT f
ACCURACY j 1.0 5.0 | 10.0
REFRACTIVE ! L o < S
INDEX i n . 1 g nz21 n< l nz=z1l n 1 n
o(®) ! 4 > L3 7 2 5
{
ps’K(P) L 15 25 6 7 5 5
!
. 1
0. .(8) ) 200 11 70 5 40




33

*(0°T su) A47ATSSTWO TewtoN OT °3Td

u‘ X3ANT 3IAILOVHLIY

ol

80

L0

90

°1¢

vo

€0

I

I

I

gl

ol

\mN.

Sl

0

%

it o
o o
> ' ALINISSING TVYWION

©
o

@
(o]

o'l

X*‘N




3h

*(0°T zu) A3TATSSTWS TewIoN TT *ITd

3

U X3JANI 3AILOVYH43H
ool 06 o8 0L 09 o¢ ov (03 02 Cr

14V

©
o

@
o

“ ALIAISSINT TVAYON

‘(NB




35

3.3 Hemispherical Properties

The relations of electromagnetic theory for directional reflectivity
of optically smooth uncontaminated surfaces may also be used to evaluate

the monochromatic hemispherical emissivity, The hemispherical

GH,X .
emissivity may be determined from the directional emissivity by integration

over hemispherical space.
n/2

EH,X = _j( e}ge) sin 296 49 (3.3.1)

0.
Account has been taken in Eq. (3.3.1) for the azimuthel symmetry of €9 (g)
Analytical integration of the exact relationships for ex(e) for
arbitrary n and k does not appear possible. However, for electrical non-

conductors (k = 0) the following closed form mey be obtained:

(3n + 1)(n - 1) n?(n® - 1)2 n-l
- - In ( T
6(n + 1)2 (n® + 1)° o+

e - =
B T 2

20°(n® + 2n - 1) _ 8u*(n* +1)
(n* - 1)(n® + 1) (n® + 1)(n?* - 1)2

+ Inn (3.3.2)

The approximate formulae for n®(1l + k%) >>1, namely Egs. (3.2.6) and
(3.2.7), yleld the following analytical result for hemispherical emissivity

for arbitrery n and k:

€H = bn + 3 . )-l-na In [l + 2n + n2(l + ka)]
2 n(l + k3) n2(1 + k)
. S In [l +2n + n3(1 + kz)]
n2(1 + k%)%
+

unagi -k -l [ K ]+ M1 - ¥3) -1 l;nk

1+ n(l+x2)] n2k(1 + x3)2 1

(3.3.3)
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A comparison of the results for hemispherical emissivity obtained by
numerical integration of the exact relations and those evaluated from
Eq. (3.3.3) is shown in Figures 12 and 13 for refractive index values less
than and greater than unity, respectively. A range of values for absorption
index is considered in each figure. For values of n greater than unity, the
discrepancy in results is indistinguishable on Figure 13 provided k exceeds
0.50. The largest error incurred by the use of Eq. (3.3.3) forn 2 1 is
9.0 per cent at n = 1 and k = 0. For values of the refractive index less
than unity, errors of an order of magnitude are incurred by the use of
Eq. (3.3.3) for small values of refractive index. Fortunately, most materials
with refractive indices less than unity possess large values for the
absorption index so that Eg. (3.%.3) is again adequate except possibly for
refractive indices less than about 0.1.

Quentitative criteria have been developed for the use of Eg. (3.3.3) in
evaluating hemispherical emlssivity when the refractive and absorpticn index
are specified in terms of the parameter n®(1 + k2). These are given in
Table 3 and are used in the same manner as those previously given in Table 2

for the approximate directional reflectivity relations.

TABLE 3

MINIMUM ALLOWABLE VALUES OF n2(1 + k%)
FOR SELECTED ACCURACY IN APPROXIMATE
HEMISPHERICAL EMISSIVITY RELATION

PERCENT |

ACCURACY 2.0 20
REFRACTIVE { >

INDEX n<l 2 n 1l n<l1l na 1
QH’)\ | 3 i 4 2 1.5
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The results for monochromatic normal emissivity of Section 3.2 and
those for monochromatic hemispherical emissivity presented here may be

utilized to comstruct curves of .

verses . Such curves are

7,2/, 2
particularly useful for the determination of the optical constants of
materials. Measurements of the spectral normal and spectral hemispherical
emissivity of an optlcally smooth uncontaminated plane sample suffices to
determine n and k at the wave length of the measurement. With this in mind,
Figures 14, 15, and 16 have been constructed from the results of the exact
relations. The complicated character of GH)X/GN,K versus eN:X curves
requires a number of Tigures to adequately display the results. Figures 14
and 15 illustrate the results for absorption index values between 0.0 and
20.0 for refractive indices less and greater than unity, respectively. The
experimental values of n and k for electrical conductors are such that SN:)
is often less than 0.2. Since this portion of Figure 15 is difficult to

interpret, it is shown at e smaller scale in Figure 16.
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L.0 Heat Trensfer and Equilibrium Temperatures

The non-gray non-diffuse surface heat transfer study has not progressed
to the point where heat transfer results are available. However, intensity
distributions have been calculated using the Beckmann bi-directional
reflectance model in the strip system illustrated in Fig. 17. These show
significant departures from those of diffuse and specular surfaces. Section
L.l is devoted to a discussion of these results.

As previously indicated, the accuracy of the commonly employed gray
theories for heat transfer will be assessed by comparison of heat transfer
and equilibrium temperatures predicted by these with that of the comprehensive
real surface analysis in progress. Unfortunately, the gray theory results
available are insufficient for a meaningful comparison. As a result of this
deficiency, an effort was initiated to supplement the available analyses with
those required for this study. The system considered in each case is that of

In way of review, the assumptions employed in the gray analysis include
the neglect of end effects (infinite width plates) for egual length opaque
plates exchanging radiant energy in the absence of an attenuating media but
in the presence of a collimeted solar field. The properties of each surface
are taken uniform over the extent of each surface. The prescribed temperature
distribution for radiant flux calculation as well as the prescribed flux
distribution for temperature determination will be restricted to a spatial
variation only in the distance measured normal to the common apex. Under
the prescribed conditions, the local heat flux for surfaces of prescribed
temperature and the local temperature for surfaces of specified local radiant
flux also depends only on the coordinate along the plate length. The analysis

for diffusely emitting-diffusely reflecting surfaces is summarized in Section



Fig, 17 Thin strips geometry.

Fig. 18 Finite difference form of thin strips geometry.

L
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4.2.1 while that for diffusely emitting-specularly reflecting surfaces is
presented in Section %.2.2. Equilibrium temperature distributions for the
adjoint plate system (ao =b_ = 0) in a solar field directed along the
bisector of the included angle (es = E%ﬂ.) for both gpnalyses are presented
and discussed in Section 4.2.3.

The analysis of Section 4.2 neglects the dependence of radiative surface
properties on direction of incident or emitted radiation. The heat transfer
results of a gray analysis for specularly reflecting surfaces of uniform
temperature which includes the directional dependence of emissivity,
absorptivity, and reflectivity are reviewed in Section 4.3. The details of

this analysis are availlable in the literature [ 3].
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4.1 Non-gray Non-diffuse Surfaces

This section is devoted to the presentation and discussion of
representative samples of initial results obtained from the non-gray,
non-diffuse radiant heat exchange analysis. Although the investigation
is not complete, results are available which indicate that significant
deviations from gray diffuse or gray specular results can be expected.
The importance of a complete characterization of surface roughness is also
demonstreated.

The results presented here are spectral intensity distributions
calculated for the thin, adjoint strips geometry (Figure 17) with given
uniform and equal surface temperatures and no external flux. The
directional emittance is that predicted by the Fresnel relations, and
for present purposes it is assumed that variations of the refractive and
absorption indices with wave length are small enough to be neglected.
Fd;ii;ve lengths in the infrared this should be reasonably valid.

Numerical solutions were obtained with éach strip divided into ten
equal length elements (Figure 18). The width of the gtrips was taken as
one tenth the strip length. The numerical solutlon yields, for each
element the intensities in the directions along lines drawn from the center
of the given element to the center of each of the ten elements on the
opposite strip. It must be emphasized that the results presented here are
preliminary and only qualitative remarks can be made concerning them. Much
work remains before guantitative results can be given. An important factor
to be evaluated is the truncation error introduced by the finite subdivision
of the system.

If an accurate semigray model for radiant exchange is to be developed,
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it is necessary to determine the affect of surface roughness on radiant
exchange for the range of the spectrum of interest. The results shown on
Figure 19 are for this purpose. The strip surfaces were assumed to have
fixed roughness parameters O and a as required by the Beckmann reflectance
model. Intensity distributions were then calculated for emission at several
different wave lengths. The particular parameter values selected are
indicated on the figure. For these calculations the directional emissivity
was taken to be that predicted by the Fresnel relations for n = 9.25 and
k = 2.0. These values yield a spectral hemispherical emissivity of 0.1.
Intensities were also calculated for smooth (specular) surfaces with
directional emissivity as described above, and for diffusely reflecting
and emitting surfaces with spectral hemispherical emissivity of 0.1.

The results shown on Figure 19 for element four indicate that significant
variations in intensity distribution (local radiant flux) can occur for
various portions of the spectrum. That is,even though n and k have been
assumed independent of wave length, the radiant exchange appeers non-gray
due to roughness affects. It is observed that as the wave length increases
(o/X and a/)\ decrease) the intensity distributions approach that for purely
specular reflection. These preliminary calculations alsoc indicate that the
specular and diffuse results may not represent upper and lower bounds on the
local intensity.

It should be recognized that the large dip in the specular curve near
the element normal is due to the small number of subdivisions used.

Recently attention hos been directed toward determining the surface
characteristics necessary for an adeguate description of radiation properties.

Much of the published data for radiation properties of rough metallic surfaces
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has been accompanied by only an estimate of optical roughness o/n .
Figure 20 shows normelized intensity distributions calculatéd for the strip
system with optical roughness fixed at o/n = 0.2 and for two values of
correlation distance a/x = 5.0 and 15.0. The strong influence of the
correlation distance a on the intensity distribution indicates that
specification of optical roughness by itself 1s insufficient to allow

accurate local radiant exchange predictions.

4.2 Gray Surfaces--Directionally Independent Properties

Both the analyses of Section 4.2 consider gray diffusely emitting
surfaces with the limiting cases of diffuse (Sec. 4.2.1) and specular
(Sec. 4.2.2) reflection. MNo account is taken for the directional dependence

of surface properties in either analysis.

4.2.1 Diffusely EmittingffDiffusely Reflecting Surfaces

An analysis is briefly described which effectively reduces the
evaluation of local radiant heat loss or temperature to the determination
of the solution to two simulteneous linear integral equations. It is
demonstrated that under certain conditions the governing integral equations
may be simplified to two pairs of integral eguations whose solution depends
only on the surface properties and included angle, Equilibrium surface
temperature distributions for the adjoint plate system derived from the
analysis are presented in Section k.2.3.

Consider first the evaluation of local radiant heat loss for the
surfaces when the temperature distribution on each is specified. The steady
radiant transfer rate from an eleument dAi of plate i (i = 1 or 2) is the

difference between the rates at which energy is emitted and incident energy
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absorbed. On a unit area basis, the net radiant heat loss per unit time
of the considered element, q{, may be expressed as

€,
9i(xg) = l‘ti [Eb,i(xi) i Bi(xiﬂ’ (4.2.1)

(i =1, 2)
where Eb 1 Bi’ € represent local black body emissive power, radiosity,
s

and emissivity, respectively.
If the local radiant heat loss is specified, Eq. (4.2.1) may be

rearranged to yield the local temperature.

1- €
€u

1

UT;(Xi) = ( ) qz(xi) + Bi(xi)) (u'e'e)

(i =1, 2)

In Eq. (4.2.2), o is the Stefan-Boltzmenn constant.
~_ In either surface condition, that is, specified temperature or

sp;cified heat flux, the evaluation of the quantity of interest (heat flux
or ﬁemperature) is readily calculated once the radiosity distribution has
been evaluated. With this in mind, attention is turned to the determination
of the radiosity.

The radiosity of an element of surface i, Bi(xi)’ is the sum of the rate
of emission and rate at which ineident radiant energy is reflected. The

incident energy consists of the sum of contributions due to diffuse energy

leaving plate j (Jj # i) and direct illumination by the collimated solar field.

Thus _
Bi(x,) = B, 4(x) + (1 -¢) IJ/BJ(XJ.)KY(xi,xj) ax,
1 %
+ SF.(x.)| , . (k.2.3)
t GIys 1t
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where
KY‘X.’X.) - Sinz,Y xi}:j
B 2 [x5 + x5 - 2x.x, - cosy]B/2
i7" 75 i%3

(h.2.4)
The integral appearing in Eg. (4.2.3) represents the contribution of the
adjacent plate to the incident energy and SFi(xi) the direct illumination due
to the solar field. S remains the value of the solar flux measured normal
to the collimated field on a unit area surface, Fi(xi) accounts for the
spatial variation of the directly incident solar flux on the surfaces. As

an example, Fi(xi) is given by the relation

.Y . .
Fi(xi) = sin 3, (i =1, 2) (k.2.5)
for fully illuminated surfaces.

For surfaces with specified radiant flux, Eq. (4.2.2) may be used to

eliminate E_ i(= o Ti) in favor of the knowpn flux qg(xi) to yield
2

P

Bi(xi) = q{(xi) + ’ J[Bj(xj) K,Y(xi,xj) dxj+ S Fi(xi)] N

J (4.2.6)

¥

i, 2 .
12 1#AJ)
Both pairs of integral ecuations, that is, those for specified

temperature distribution (Fa. (4.2.3)), and those for specified surface heat

flux (Eg. (4.2.6)), are included in the general form

B,(x,) = G,(x,) + C, f B, (x,) K (x,,%)ax,, (.2.7)
J

i=l’2. s
(5.1, 2 349
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For surfaces with specified temperature distribution

C;=1-c¢,, Gi(xi) = eiEb,i(xi)+-CiS Fi(xi) (4.2.8)

while for surfaces of specified local radiant heat loss

C; =1, Gi(x;) = qi(x;)+sF,(x,) (k.2.9)
The solution of the simultaneous linear integral eguations, Eq. (4.2.7),
depends on a number of parameters including the properties of the plates,
included angle, solar field magnitude and direction, and either the
distribution of temperature or radiant heat transfer along the surfaces.
Considerable simplification may be realized in the system, Eq.
(4.2.7), when the functions G, are non-zero constants. In particuler, it

may be shown that the radiosities Bi are given by

o

By(x;) = 6 B5.(5) + 6y puley)s ;:g i43)

(4.2.10)

where the dimensionless radiosities Bia and ij are determined by the

simultaneous integral eguations

BiaEy) = 1+c, ~£’ij(gj) K (25085) gy
3 (4.2.11)
BalEy) = C, [B-in(gi) K (g558,) d g,
vt w v J - T Y - Tud -~
£, _
” G215 143)

The solution of Egs. (4.2.11) depends only on the included angle and
properties of the plates. For surfaces with specified radiant heat flux,
the parameter dependence reduces to only the included angle.

The simplifications which result when the Gi are non-zero constants
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pertain to some important situations. The directly incident solar radiation
is uniform for a fully illuminated system and a semi-illuminated system in
which one surface is completely illuminated and the other receives no direct
solar illumination. Of course, the trivial case of no direct illumination is
also a possibility. For these conditions of exposure to the solar field,
the Gi are constant provided the surface temperatures or radiant heat
transfer is uniform. Equilibrium temperatures may be determined in the
latter case only for fully illuminated surfaces.

In summary, when both surfaces have uniform but not necessarily
identical temperatures and are exposed to the collimated solar field such
that the system is fully- or semi-illuminated, the dimensionless local

radiant heat loss of either surface may be evaluated from the relation

q;{(xi) 1 Ti 4 // Tl 4
" = (T -€) (T ) - \ei (T )
elgTEep 1 ref \ ref
. / 7, "
S J S
1l - €, F . =€, 1 - € F, .
* l) (0T4 ) ;B:La <\J(Tref) + J) (0T4 ) 1> Bib
ref ref
i=1, 2 . .
('j - 1: - i £ 3) (4.2.12)

where Tref is an arbitrary reference temperature. For surfaces of constant
local radiant heat loss under the same conditions of solar illumination, the

local temperature mey be evaluated from the result

T.(x.) 4 1-c¢€ g" /gl \

. ! q.
(2 = (DL + ((—2) s (= 7\ ..
Tref Ci cTﬁef \ cT:ef 0T§ef * Pia
qn \
[ s
M >F>sb
\ cTl‘fef T;ef y :

GI1 5 149 (4.2.13)
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The dimensionless radiosities pia and Bib (i = 1,2) are the solutions to

Eq. (4.2.11).

h.2.2 Diffusely Emitting-Specularly Reflecting Surfaces

An analysis is presented for the evaluation of local radiant heat
flux or temperature of gray diffusely emitting-specularly reflecting
surfaces. It is shown that the local radiant flux for surfaces of
specified temperature distribution may be directly calculated. Equilibrium
temperature distribution for surfaces of zero radiant heat flux requires the
solution of simultaneous linear integral equations. Equilibrium temperature
results obtained from the analysis are given in Section 4.2.3.

Again, consideration is initially given to the evaluation of local
radiant heat loss for surfaces of specified temperature distribution. The
steady radient transfer rate from element dA, of plate i (i = 1 or 2) is the
difference between the rates at which energy is emitted and incident energy
absorbed. On & unit area basis, the net radiant heat loss per unit time of

the considered element, q;(xi), may be expressed as

a(x) = ¢ [B(x) - B(x)], (i=1,2) (k2.14)

where Hi represents the local irradiation.
If local radiant heat loss is specified, Eq. (4.2.14) may be rearranged

to yield the local temperature.

. gy (%)
oTi(xi) = —-—-g;- +Hi(xi) (1 =1,2) (4.2.15)

Thus the evaluation of local radiant heat loss for surfaces with specified

temperature distribution or surface temperature distribution for surfaces of
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specified local heat flux requires the determination of the local irradiation
Hi(xi). Attention is therefore directed to the evaluation of Hi(xi).

The ifradiation of an element of surface i, Hi(xi), consists of contri-
butions due to both surfaces and the collimated solar field. The contri-
bution of each source may be evaluated by accounting for the energy directly
transported and that arriving by all possible specular reflections. The
latter may be determined by employing the imaging techniques currently in
widespread use. The result of such esnalysis is an expression of the

following form:
2
H(x,) = 5 F,(x,) + Z j & B y(x,) K (xp,x)ax,,  (4.2.16)
=1 7J
(i =1,2)

The summetion in Eq. (4.2.16) accounts for the emitted energy of both
surfaces which arrives by direct transport and specular reflections. The
repaining term is the contribution of the collimated solar field which again
accounts for direct and specular reflection paths. In general, the function
Fi and KY depend not only on geometry as in the analysis for diffusely
reflecting surfaces of Section 4.2.1, but also on the velues for the specular
reflectance of both surfaces.

Introducing Eq. (4.2.16) into Eg. (4.2.14) yields the following
expression for the local radiant heat flux for surfaces of specified

temperature:
2

G0xg) = ey omx) -5 E () - ) o [ & T € Gxpmges]
) J=1

(i =1,2) (k.2.27)
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According to the above result, the local radiant heat flux may be evaluated
once the properties of the surfaces, megnitude and direction of the solar
field, and the orientation of the surfaces are specified. This is in
contrast to the necessity for first determining the solution to auxiliary
integral equations in the diffusely reflecting analysis of Section 4.2.1.

For surfaces of specified radiant flux, Eg. (4.2.16) may be used to eliminate

Hi(xi) from Eq. (4.2.17).

( 2
T;*(xi) = _Jé [qle’;i) + 5 Fi(xi)] + Z; [eJ.TB*(xJ) Ky(xi,xj)dxj,
=1 J
(1 =1,2) (4.2.18)

Equations(4.2.18) constitute a pair of simultaneous linear integral equations
for the temperature distributions on both surfaces. Their solution depends
on the values selected for the properties of both plates ei(pi =1l - ei),
the variation of local heat flux slong each surface, megnitude end direction
of collimated solar field, and the geometrical relationships between the
surfaces. Further gross simplifications such as those for the diffusely
reflecting surface analysis of Section 4.2.1, do not appear possible even
for uniform flux except for restricted values of the included angle between

the surfaces.

If consideration is limited to the adjoint plate system (aO =b = 0)

o
with 1denticel property plates and collimated solar field directed along

the bisector of the included angle, the local heat loss for specified
temperature and local temperature for specified radiant flux on both surfaces

is identical. For this situation, the functions KY and F, are of the

i
following form:
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, = = 2 vee + oE
Kylegoxg) = (K 1 Xp) = £ 4 p Do+ o 2504 P (k41)y

(%.2.19)
F.(x,) = sin L (x! -~ x,) sin LA (x! - x.) sin 2,
iv¥y) = I A B 2 TPt Xy 5 o
m-1 —_— . (2m - 1)y m_. (2m+ 1)Y
+ 0 um-l(xm-l Xi) sin 5 + p sin 5
(4.2.20)
where
in®ny *1% 3
£ (x,,x,) = =
ny Y1073 2 2, .2 _ 3/2
[xi + x5 2xixj cos ny ]
(k.2.21)
1, z20
x'
£ - sin Y/2 (4.2.23)

sin(2m + 1)/2

and p denotes the common specular reflectance value of the surfaces. The
number of terms in KY and Fi’ that is the values of k amd m depend on

the velue of the included angle. Thus, when the surfaces of the system heve
uniform properties and specified distribution of temperature, the dimension-
less local radiant heat flux of either surface may be evaluated fram the

following relation:

1t 4 2 4
9 (x,) ) T3 (%) ) S ). . ZE: %3 TJ(XJ) K (x.,x,)dx.,
€ o4 T4 o 1 i 4 J
i “ref ref ref J=1 J ref

(i = 1,2) (k.2.24)
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For surfaces of constant local radiant heat flux, the local dimensionless
temperature is determined by the simultaneous solution of the pair of

integral equations

74(x. ) a''(x,)
- a2 )F.(x.>]
4 i or* ot Tt
ref ref ref

2 T(x,)

—J;—L K, (xpx)ax,  (1=1,2) (4.2.25)

Equilibrium surface temperatures are determined from Eg. (4.2.25) by

equating the local radiant flux to zero.

L.2.3 Equilibrium Temperature

Equilibrium surface temperature distributions have been determined for
the adjoint plate system (ao = b, = 0) with identical property plates exposed
tg_greg;limated solar fileld directed parallel to the bigector of the included
angle (GS' (m=y) /2), In this situation, the temperature distribution is
identical on both surfaces. Representative results for both the diffusely
emitting-diffusely reflecting and the diffusely emitting-specularly reflect-
ing analyses are shown in Figures 21, 22, and 2% for included angles
ot 500, 900, and 1200, respectively. In each figure are showia distributions
for emissivity values of 0.1, 0.5, and 0.9 for specularly reflecting surfaces
and the single distribution required for a diffuse surface. The value of
the solar constant utilized to construct the figures is S = 4h2 BTU/hr £t2.

The temperature distributions exhibit some common characteristics which
should be expected in view of the variation of local irradiation along the

surfaces, First, the maximum temperature occurs at the apex and decreases with
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increasing values of the opening angle when all other parameters are held
fixed. Secondly, the temperature distribution is a monotonically decreasing
function of the distance from the apex with the extent of the non-uniformity
of temperature from spex to end diminishing with increasing values of the
opening angle for selected emissivity.

Of particular interest is the comparison of maximum temperature and
equilibrium temperature distributions for the diffusely reflecting and
specularly reflecting surfaces at the various opening angles of the system.
Turning first to the maximum system temperatures, it may be noted that apex
temperatures for the 500 and 90° included angles are independent of the
assumed reflection model. Such is not the situation for arbitrary included
angles as exemplified by the results for 120°. 71t may be shown that the
corner temperature is independent of whether the surfaces are specularly
or diffusely reflecting when the value of the included angle is 5 /n where
n is a positive integer.

The behavior of the equilibrium temperature distributions lends consider-
able insight into the radiant exchange process. Consider first the results
for 120° illustrated in Figure 23. For this value of included angle the
contribution of the solar field to the irradiation of the plates is identical
for both the diffusely reflecting and specularly reflecting surfaces. Now
all reflected energy leaves the opening after a single reflection when the
surfaces are specularly reflecting. On the other hand, diffusely reflecting
surfaces redistribute the reflected energy uniformily over hemispherical
space and hence some of this energy returns to the adjacent surface. Thus,
the element at each location of the diffusely reflecting surface

experiences a greater incident flux than the corresponding locations on a



specularly reflecting surface. Hence, the diffusely reflecting surface
shouwld everywhere exhibit a greater temperature than that of a specularly
reflecting surface. This difference in temperature at corresponding locations
should increase as the magnitude of the specular reflectance increases. These
trends are all evident in Figure 23 . The radiant transfer process for an
included angle of 90° has one significant difference from that at 120° which
reverses the trends from those of 120°. For an included angle of 900, the
specularly reflecting system experiences an increase in solar flux uniformily
over the extent of the surfaces as a result of the imege of the solar source
in the adjacent surface. That is, an observer stationed on either surface

of the specularly reflecting system observes an additional solar source in
the adjacent surface with an apparent solar constant vhich is the product

of the surface reflectance and the solar constant of the external field.

This increese in local solar flux for the specularly reflecting surfaces
should dominate and thereby result in greater irradiation for the specular
reflecting system than for the diffusely reflecting surfaces. 8Since the
apparent solar constant increases with the reflectance of the surfaces, the
local equilibrium temperatures should increase with increasing reflectance.
Figure 922 confirms these observations. The lowest temperatures are
achieved by the diffusely reflecting surface with the temperature difference
between the diffuse and specular surfaces increasing with increasing values
of reflectance. The equilibrium temperature results for an included angle of
300 exhibit both trends evident for 90o and 120° included angles. Near the
apex, the increased solar flux due to the five apparent solar sources results
in temperatures for the specularly reflecting surfaces which exceed those

for the diffusely reflecting surfaces. On the other hand, near the plate



65

ends where only direct and five times reflected solar energy is incident

on a specular surface, the increase in solar flux is not sufficient to
exceed the irradiation on a diffuse surface and, consequently, the diffuse
surface experiences the higher temperature. The discontinuities in the
temperature distribution for the specular surface system evident in

Flgure 21 are a result of the discontinuities in the locally incident solar
flux and neglect of heat conduction in the plates.

A comparison of results to those reported by Plamondon and Lendran [9]
for the adjoint plate system with diffusely emitting-diffusely reflecting
surfaces shows large differences in predicted temperatures. Plamondon
and Landran included the wave length dependence in their calculations for
some selected materials but used only four elements in their finite
difference solution. For an included angle of 300, the gray diffusely
reflecting results reported here exceed those reported for the non-gray
analysis by as much as 55°R for polished sluminum and 185°R for a surface
painted PV-100 white and black. At a value of 60° for the included angle,
the gray results were 120°R lower for the polished aluminum and 140°R higher
for the painted surface. These large differences in predicted temperatures
cannot be entirely attributed to the lack of accounting for wave length
dependence of properties because the four element finite difference network
of Plamondon and Landran is not sufficient for accurate results, especially
neaxr the apex where the largest differences in temperature occur. However,
even if only half the difference in temperature is attrabuted to non-gray
surface property effects, it appears that gray analysis can result in errors

as large as almost 100°R in predicted temperatures.
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L.3 Gray Surfaces-Directional Properties

Radiant heat transfer results obtained from a gray surface analysis
of the adjoint plate system have been reported in detail in reference [3],
This analysis for specularly reflecting surfaces accounts for the angular
dependence of radiative surface properties in the absence of any external
radiation field for uniform temperature surfaces., The results of this
apalysis were compared with the corresponding results determined by analysis
vwhich neglects directional property variation ("constant property analysis").
For the range of system parameters studied, local heat transfer derived on
the basis of constant property analysis with hemispherical property values
gave results of acceptable engineering accuracy except near the apex, where
discrepencies as large as a factor of two were observed, Total heat losses
evaluated from the simpler constant property analysis were generally within
a few percent of those which account for directional property variations.
It appears, therefore, that neglect of directional property dependencies in
engineering radiant heat transfer calculations for specularly reflecting
surfaces is generally Jjustified. Considerable care should be exercised,
however, for surfaces which receive major contributions to their irradiati:

from energy incident at large angles relative to the surface normal.,
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5.0 Summary and Conclusions

A method of analysis has been presented for the evaluation of radiant
heat transfer between engineering materisls which accounts for both the
spectral and directional character of radiation surface properties. This
analysis is being applied to a gelected two surface system in the presence
of a collimated solar field to determine the local radiant transfer from
surfaces with specified temperature distributions and to calculate the local
temperature for surfaces with prescribed variation of local radiant heat
transfer. Results of this analysis are not yet available but subsidiary
investigations in support of the non-gray non-diffuse surface heat transfer
study have provided some signif;cant findings. These are summarized here.

The detailed surface property information required to implement the
real surface analysis ls contained in the spectral bidirectional reflectance
of the participating surfaces. As a result of a study of the Davies [6] and
Beckmenn [7] bi-directional reflectance models it may be concluded that

1. The Davies model is inadequate for the heat transfer study
because of its gross violation of the energy conservation
requirement in the surface optical roughness range of interest.

2. The Beckmann model is far superior to that of Davies and provides
an acceptable description of the spatial description of reflected
energy from a roughened metal surface.

3. Sufficlent experimental data is not available to adeguately
evaluate the bidirectional reflectance model.

The approximate directional reflectivity relations derived from electro-

magnetic theory for n®(1 + k®)>>1 provide exceptionally accurate descriptions

of the radiation property values of optically smooth unconteminated surfaces.
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Quantitative criteria have been developed which asgure certain selected
prescribed accuracies in the use of these approximate relations for the
evaluation of the polarized reflectivity components as well as the unpolarized
reflectivity and hemispherical emissivity.

Intensity distributions determined from the non-gray non-diffuse surface
analysis utilizing the Beckmann bi-directional reflectance model have been
determined for a simplified version of the original system chosen for
analysis. These indicate significent departures from those of diffusely
reflecting and specularly reflecting surfaces.

Ingsufficient results of gray surface analysis for both specularly and
diffusely reflecting surfaces are available for the system and environment
chosen for study. An effort was initiated to supplement the available
results in order that a meaningful comparison to the results of the
comprehensive non-gray non-diffuse study could be achieved. Equilibrium
temperature distributions determined by the use of gray completely diffuse
surface theory show differences in local temperature as large as 185°R from
a recently reported analysis which accounts for the spectral variation of

surface properties.
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